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Abstract 

Kinetics of decay of excited donor molecules B* by static and diffusion-induced electron and energy transfer to accepters (A) in restricled 
two-dimensional space, as described by the surhce of a circular disk (circle), have been examined. In the first instance, an analytical solution 
is given to outline the decay of B* by a static distance-dependent electron and energy transfer process to some random accepters. Results 
show that luminescence decay of B* on a restricted two-dimensional surface is slower than a similar decay on an infinite surface, with the 
difference between the kinetics in restricted space and infinite space increasing with increasing observation time. The decay of B* molecules 
on diffusion approach of reagents along the two-dimensional disk surface is exponential at sufficiently long times, a kinetic behavior that 
contrasts with the long-time behavior of diffusion-limited decay processes taking place on an infinite surface where the rate constant does not 
achieve an asymptotic value even for long times. Decay processes of excited triplet molecules of B* by triplet-triplet (T-T) annihilation on 
the restricted circle were also examined. These differ principally from those of luminescence quenching by the fact that the concentrations of 
surface.reacting species are equal. An approximate solution to T-T annihilation by static interactions is described on the basis of the average 
reagent concentration appro~timation and with the assumption that, in the course of the annihilation pro,tess, the triplet molecules are always 
randomly distributed at the prevalent mean surface concentration. The decay kinetics described by the analytical expressions derived agree 
fairly well with the results from Monte Carlo simulations. Kinetic expressions for diffusion-induced annihilation on the two-dimensional 
restricted surface are also described using an infinite space approximation for the rate constant; Monte Carlo simulations indicate that the 
resulting kinetic ~olution is usctul to analyse the decay process on the circular disk provided that the effective radius of the annihilation evem 
does not exceed one tenth the disk radius. 
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1. Introduction 

The kinetics of chemical reactions in restricted spaces have 
been the subject of several investigations in the last few years 
[1-12]. Various experimental situations exist in which a 
chemical reaction occurs when the reaction volume is too 
small to allow usage of theories of kinetics that apply to 
processes in infinite space. These types of system are known 
as restricted geometries. They are systems that are not spa- 
tially infinite and do no involve an infinite number of reacting 
molecules. Amongst these systems, micellar and vesicular 
systems, membranes, polymer solutions and porous systems 
have been examined [3,7,11-15]o The kinetic behavior of 
chemical reactions in such systems differs from that in infinite 
space. The partition of reacting species over the small vol- 
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umes and the small number of species present in each volume 
preclude application of classical chemical k~netics to describe 
the temporal course of reactions in such restricted systems. 
A study of the kinetic peculiarities of ehemi~.al processes in 
restricted systems provides important information on their 
structures and dynamics. 

The mathematical description of chemical reactions in 
restricted geometries is based on the use of the stochastic 
approach that provides a well-defined method for the analysis 
of statistical fluctuations in the number of reacting species. 
The principal basis of the stochastic approach is to treat the 
concentration as a time-varying discrete random variable 
being influenced at different times by probability effects. The 
problem is to determine the probability that the system is at 
the specified state (concentration) at time t. The stochastic 
approach is applicable to all types of reaction system. In many 
cases, however, the resulting differential equation that defines 
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the stochastic model cannot be solved exactly. Alternatively, 
an explicit analytical solution of the problem can be found 
only under some special simplified assumptions about the 
system. Mon~ Carlo simulation methods can validate sim- 
plified analytical equations for the analysis of chemical reac- 
tions in real and more complicated restricted systems. 

Quantized semiconductor colloidal particles, whose 
dimensions range from nanometers to several tens of nano- 
meters, represent a new class of systems with restricted 
geometry. These particular systems show some unusual pho- 
tophysical aM photochemical properties: (i) non-lineat opti- 
cal response,, (ii) blue shifts in the optical spectra, (iii) 
increase in the redox power with a decrease of the quantized 
particle dimensions and (iv) unusual catalytic properties, 
among others [ 16~19]. Efforts to use quantized particles in 
wasteowater detoxiflcation systems [20] and in the sensiti- 
zation of large.band.gap semiconductors for solar energy 
conversion systems are relevant [21,22]. Surface reactions 
play a decisive role in the prol~Nies of quantized materials 
in such systems. 

The kinetics of triplet-triplet (T-T) annihilation and lumi- 
nescence quenching of excited donor molecules by acceptors 
on the surface of quantized layered MoS2 particle were 
recently examined experimentally [6]. Quantized particles 
of metal dichalcogenide layered semiconductors possess 
excellent characteristics for studying surface processes. They 
ate characterized by weak van der Waals interactions between 
the layers, while strong chemical forces hold molecules 
together inside the layers. This makes it possible to form 
highly ordered interfaces, avoiding problems of surface struc- 
ture heterogeneity and adsorbed molecules mismatch that are 
characteristic of three-dimensional n,,~teda!s [20]. More- 
over, the shape bfquantized particles of metal dichalcogonid¢ 
layered semiconductors can be approximated to a circular 
disk [23,24]; this facilitates modeling chemical reaction 
kinetics on its surface, 

In this study, we describe the kinetics of electron and 
energy transfer processes on the surface of a restricted two. 
dimensional circular disk whose dimension is so small that 
only a small number of reagent molecules can be adsorbed 
on it. Three cases are considered: (I) electron transfer 
quenching of an excited donor molecule B* by an accep- 
ter(s) A when both ate adsorbed on the surface of the disk 
(henceforth also referred to as circle); (2) quenching of B* 
by energy transfer to accepters via an exchange mechanism; 
(3) T-T aenihilation of adsorbed excited B* molecules. All 
these processes are characterized by the exponential depend- 
once of the rate constant on the distance r between the rea- 
gents. ]'he principal goals of this paper are then twofold: (i) 
to describe kinetic equations for luminescence quenching and 
for T-T annihilation on a flat two-dimensional restricted sur- 
face and (ii) to compare the results from the consequent 
analytical expressions with those from Monte Carlo calcu- 
lations if only approximate equations can he derived. Utili- 
zation of the binary approximation avoided complications of 
multiparticle correlations and permitted conventional meth- 

ods for treating the reaction kinetics [ 25-28]. Comparison 
of results from the approximate analytical equations with 
results from Monte Carlo calculations yielded estimates of 
their limits of validity. In addition, we evaluated the influence 
of surface dimension restriction on the decay kinetics of 
excited molecules. 

2. Kinetics of luminescence quenching in restricted two- 
dimensional space (circular disk) 

Relaxation kinetics of excited donor molecules in infinite 
space by distant interactions with acceptors arc a well-known 
problem [25,29-34]. When more than two molecules are 
present in the reaction volume, the problem reduces to the 
summation of the excited donor molecule decay rates over 
all the accepter molecules. The necessity to account for mul- 
tip~icle correlations make this a difficult problem to analyse 
quantitatively. A two-particle approximation is commonly 
used to avoid complications of multiparticle corrections. 
Therefore the decay of an excited donor molecule by electron 
or energy transfer to an accepter molecule is assumed to be 
unaffected by the presence of another accepter molecule. The 
assumption of a low concentration of accepters allows us to 
replace the summation of the decay rates over all accepter 
sites by an integration over all space. Under this assumption, 
a number of approximate analytical expressions for the decay 
of an excited donor have been derived using a variety of 
differen! procedures 127-36]. 

After pulse excitation, the decay kinetics of excited donor 
molecules that follow the reactions 

B*+A---- ,  B++A ° "~. (ia) 
with rate constant w(r) 

B* +A --~, B+A . /  ( lb) 

I 
B* ~ hv with rate constant - (2) 

T 

obey the differential equation of the non-Markovian encoun- 
ter theory [ 25,33,37 ]: 

dN(t-----D = - k ( O c N ( t )  - l_ N(O (3) 
dt T 

where N(t) is the density of excited donors, c is the concen- 
tration of the accepter species and k(t) is the time-dependent 
rate constant for the quenching of the excited donor by an 
accepter in binary approximation and is given by 

P 

k(t) Jw(r)p(r, t) dr (4) 

The term w(r) is a distance-dependent rate constant that 
depends on the electronic coupling between donor and accep- 
for which in turn depends exponentially on the intermolecular 
distance r, both for luminescence quenching via electron 
transfer from B* to A and for emission quenching of B* by 
energy transfer via an exchange mechanism ( see for example 
[31,34] ), it is given by 
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w(r) = v exp ( -  2 - ~ )  (5) 

where r is the distance between centers of the reagent mole- 
cules, d is the sum of radii of the molecules, u is the frequency 
factor, a is a factor that takes into account tiae decrease in 
w(r) with increasing distance, and p(r,  t) is the distribution 
function for the pair (B*...A) at time t in which the donor 
and accepter are separated by the distance r. iategration of 
Eq. (4) is carried out over all space, and p(r,  t) satisfies :he 
kinetic equation [ 25,32 ] 

ap(r, t) =DlTZp(r ' t) - w ( r ) p ( r ,  t) - 1 at -~p(r, t) (6a) 

and the initial conditions defined by 

p(r,  0) ~ I (6b) 

where D is the sum of the dil'filsion coefficients el'donor and 
accepter species. 

Eqs. (3)=(6) have been used in several studies to fonnu° 
late the kinetics of energy and electron transfer reactions in 
infinite spaces. An analogous procedure tbr the decay of an 
excited donor molecule can be used in the analyses of proc- 
esses in restricted spaces [ 28]. We now examine the decay 
kinetics of excited molecules on the surface of a circular disk 
(circle) using, where possible, appropriate results obtained 
previously for related objects. 

We consider first the concentration and the time depend- 
ences of the direct electron or energy transfer from a single 
excited donor to accepters randomly distributed on the sur- 
face of the circle. In accordance with a typical condition that 
is valid in luminescence quenching experiments in restricted 
systems, we assume that only one donor is present on the 
two-dimensional surface. This assumption avoids donor- 
donor interactions and possible saturation of accepters by 
electron or energy transfer from other excited donors. We 
also neglect any possibility of back electron transfer or back 
energy transfer. Only two-body interactions between the 
donor and each accepter are taken into account; also any 
interaction between accepters is excluded. The transfer of 
excited donor or accepter molecules from one circle to 
another and any interaction between species from different 
circles in solution are also excluded. 

2. i. Static quenching: approximate analytical solution 

We examine here the deactivation of an excited state mol- 
ecule B* by electron and energy transfer to some random 
accepters A that are restricted on the surface of a circle, in 
competition with the B* spontaneous transition to the ground 
state. 

We first consider the round fiat restricted surface of radius 
R with an immobile excited donor B* and accepter A mole- 
cules randomly distributed on the circle, so that the center of 
each molecule is placed on the surface (Fig. 1 ). The sum of 

Perspective View of Disk 

0 

Top View of Disk (circle) 
Fig. 1. Schematic picture of the spatial confinements of the donor (O) and 
of the accepters (O) on the surface of the circle, 

radii of B* and A is denoted d. The space restriction will 
necessarily result in a different initial distribution function of 
(B*...A) pairs with different positions of B* on the disk 
surface. Accordingly, the time-dependent rate constant k(t) 
in Eq. (3) will differ for different excited donor molecules. 
For this reason, averaging over different positions of the 
excited donor is necessary in the calculations of the decay 
law. 

Consider next the excited donor molecule B* positioned 
at a distance re from the center of the circle. The concentration 
N(t, re) of excited donor molecules is given by 

dN(t, r o) = -k(t, ro)cN(t, re)- I N(t, re) (7) 
dt 

Note the similarity between Eq. (7) and Eq. (3); however, 
the rate of quenching of excited donor B* by accepter A now 
depends on the position of the donor: 

= fw(r )go(r )p(r ,  t) dr (8) k(t, re) 
J 

where go(r) is a site-density tunction[ 1,4], and the index 
zero is a reminder that the integral is evaluated for the donor 
located at re. Integration of Eq. (8) is taken over the surface 
of the disk. 

Integration of Eq, (7) with k(t, re) as delined by Eq. (8) 
results in 
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t 

-  'ff ) N(t, re) =ex - - - c  w(r)go(r)p(r, t') drdt' 
0 

(9) 

The distribution function p(r, t') is given by Eq. (6a). Sub- 
sequent integration of Eq. (6a) in the absence of diffusion of 
reagent, D =0, and with the initial condition given by Eq. 
(6b) yields 

p(r, t) =exp[- (w(r )  + l ) , ]  (lO) 

Integration of Eq. (9) over time t' withp(r, t) from Eq. (10) 
gives 

N(t, ro) p( t f w(r) 
N(0, re) ~,ex ~ ~¢ =c go(r) w(r) + l/ 'r 

In calculating the integral in ~ .  i l l  ) it is necessary to 
evaluate the normalized area go(r) dr of three circles (Fig. 
I ) on the disk; the first main circle centered at re = 0 with 
radius R and two others centered at the position of B* ( full 
circle in Fig. I ) with radii r and r + dr. Thus 

r dr 2~p~ 
go(r) dr= ~' (R"-d  2) (12) 

where 

~ .~ arccos~ 2~ro re if r > R - re ( 13 ) 

and 

~ ' w  if rcgR-ro (14) 

Substituting Eq. (12) into Eq. ( I ! ) and averaging N(t, re) 
over the surface of the circle results in 

N(O) ~ fro dn~ 
d 

R +eo 

Xex - ¢  w(r) + l / r  

× {, -. o.,[- (.,., + 
It is readily seen that, at R-+ ~, at almost M! values of r, 
~. ~ fr, Eq, (15) then reduces to 

N(t )  p( i i w(r) 
N(D) =ex - - - c  ¢ w(r) + l i t  

d 

×(l-ex~-(w(r)+ l)t~2=dr) (16, 

Where the lifetime of excited donor molecules is very large, 
7-,o0, and at vt:~ I (note that w(r) is defined by Eq. (5)) 
we have from Eq. (16) that 

N(t)  =ex - c  ln'(vt) (16a) 
N(0) 

which is indeed the equation that describes the kinetics of a 
static reaction in infinite two-dimensional space [ 34]. 

Comparison of Eq. (15) with Fx I. (16) shows that geo- 
metrical restriction in two-dimensional space leads to a 
slower decay of the excited donor molecule B* by static 
distance-dependent electron and energy transfer. 

It is instructive to consider now a sample that contains a 
large number of restricted circles. For this sample, Eq. (15) 
is valid only if the surface concentrations of accepter mole- 
cules A are the same for all circles. However, fluctuations in 
the number of reactant species are inherent in the reactions 
that occur in restricted systems containing a small nwn~r of 
interacting species. Thus one needs to average the decay 
kinetics (F.q. (16)) over a distribution of the number of 
accepter molecules on the disk. The actual form of the decay 
kinetics will depend on the distribution function chosen; 
amongst the various reasonable distribution functions, the 
kinetics will have the simplest form ifthe Poisson distribution 
were employed. 

The Poisson distribution 

I 
P(n) = ~ ii" expt - / { )  (17) 

of accepter molecules on the surface of the disks yields the 
luminescence decay 

= e x  - 

R 
#! ×exp(-~)frodroexp(- Ir(R2d~)f(ro, t) ) 

d 

(18) 

where ~ is the average number of accepter molecules per 
disk, andf(ro, t) is given by 

f w(r) 
~ro, t) = w(r) + I/v 

d 

+ , ' 9 ,  

If we interchange the order of summation and integration in 
Eq. (18) and consider that the surface of the disk is suffi- 
ciendy large that the maximal possible number of accepter 
molecules on this surface is infinite, then summing over all 
values of n affords 
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Fig. 2. Decay kinetics of static luminescence quenching on the restricted 
clrclo obtained from l~q, (20) ( -  - - )  for the following set of parameters: 
R ~ 2 0  ~, d ~ 4  ~, t ,~  10 I'~ s ~t, a ~  I A and 1'~ 10 ~ s, The numbers over 
the curves refer to the average numbors of accepters per circle, The lull 
curves show the deetty kinetics of slall¢ emission quenching on the infinite 
surface calculated with I~l, (16a), for equal values of ,,, a and the same 
average surface coucentratlons of the acceptor, 

R 

N(0) 
d 

X e x p ( - i i [ I - e x p ( -  1r(R21_d,Z),(re, t ) ) ] )  

(20) 

The decay kinetics of excited donor molecules can be 
obtained by numerical integration of Eq. (20). The same 
averaging procedure can be performed on another type of 
distribution function of accepters over the surface of the disk; 
however, the final decay equation will take a more complex 
form than Eq. (20). As an example, Fig. 2 shows the decay 
kinetics of the static luminescence quenching obtained from 
Eq. (20) (broken curves) for several surface concentrations 
of accepter species and for the following set of parameters: 
R -  20 k, d=  4 k,  u = lq I~' s- i and a = 1. A, The emission 
lifetime was chosen to be I s so that almost no intrinsic decay 
of excited donor molecules occurred during the time of obser- 
vation ( t~  10 ~2 s). The full curves in Fig. 2 show the decay 
kinetics of the static emission quenching on an infinite surface 
calculated with Eq. (16a) for identical values of v and a, and 
for the same surface concentrations of accepter molecules. 
Note how the geometrical restriction in two-dimensional 
space slows down the decay of excited donors (broken curve) 
in comparison with the decay seen on an infinite surface (full 
c u r v e ) .  

2,2. Non-static quenching: analytical solution 

We now examine the case of the diffusion-induced quench- 
ing of B* molecules by the accepter A species by electron 
and energy transfer processes. However, it is first relevant to 

consider the kinetics of non-static quenching in infinite space 
for comparison. 

The pair probability function p(r, t) satisfies Eq. (6a) and 
the initial condition of Eq. (6b) [25,32]. As noted earlier, 
p(r, t) represents the radial distribution of excited donors 
around a single accepter. Electron or energy transfer burns a 
hole in the center of the distribution, with the hole becoming 
deeper and wider with time. For diffusion-controlled reac- 
tions, the spread of the hole terminates when its radius reaches 
the maximal value of the effective radius R,,.f of the reaction 
circle 

a 

R c f f = d q  - ~ In(u'rd) (21) 

where a and ~, arc the same parameters as in Eq. (5)and ~',s 
is the average time of diffusion of tile reagent molecules. 

The decay behavior of B* (Eqs. (I)  and (2)) strongly 
depends on the value of the diffusion coefficient D [ 33,38 ]. 
The limit at very low diffusion (D s 0 )  was treated earlier 
(see above). In the limit of very fast diffusion (D -~ ~), p(r, 
t) is approximately I for any value of r and quenching is then 
kineticaily controlled. In the intermediate region of moderate 
diffusion when the quenching reaction is diffusion controlled, 
the effective radius Ref f exceeds the contact distance d 
between the donor and accepter centers. Three stages of the 
process may be established. 

( 1 ) In the first stage at which t ,~ %, the process kinetics 
are described by equations characteristic of static quenching 
discussed previously. 

(2) When t= % the quenching decay kinetics are repre° 
sented by an infinite series and are characterized by a non- 
exponential time dependence of the donor concentration. 
During these two stages, all the donor-accepter pairs with 
r<  R~fr have already decayed and the remaining donors decay 
at the moment that the acceptor reaches the perimeter of the 
reaction circle in the course of the diffusion encounter. 

(3) The majority of donors are quenched when t ~  %; 
under this condition, if the acceptor concentration strongly 
exceeded that of the excited donor, the quenching kinetics in 
three dimensional space would then be described by the expo- 
nential time-dependent equation 

- ( ,  ,) N(t) =exp - - - k q c  (22) 
N(O) I" 

where I:,i is the time-independent rate constant: kq = 4~rR~,D. 
For diffusion-controlled reactions on the infinite surface, 

the reaction rate constant does not achieve an asymptotic 
value even at long times [ 39-42]. For short times, however. 
t < rd and kq is defined by 

kq = "n'D[ I + 2R~rr(Dtlr)- I/2] (23a) 

For long times, t > % and kq is then given by 

4 
kq = ~rD in( 4Dt/ R~rZ) _ 1.15 (23b) 
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The above notwithstanding, it is common to neglect the time 
dependence of the rate constant for long times and replace it 
by a mean value [41 ]. 

Equations (22)-(23b)  are good approximations of the 
quenching kinetics for sufficiently large surfaces. For small 
surfaces, however, the applicability of these equations 
requires special analysis. We describe below a decay equation 
for the luminescence quenching of an excited donor B* on 
the surface of the restricted circle. 

The general case of emission quenching on the restricted 
circle on which both the donor and the acceptor are permitted 
to diffuse is a difficult task. We assume therefore that the 
excited donor B* is fixed at the center of the circle whereas 
the acceptor can diffuse with the diffusion coefficient D. We 
further assume that all other decay processes are slow relative 
to the quenching of B* by a quencher A and are therefore 
neglected on the time scale of  observation. We also restrict 
the present treatment by assuming that, within a circle (radius 
R=ft) around each excited donor molecule, the reaction occurs 
immediately; outside the reaction (space) circle, one species 
diffuse freely. A general case can be considered using the 
Monte Carlo method. In this instance, the distribution func- 
tion p(r,  t) will satisfy the kinetic expression 

) t a p (  r, _ D~72p( r, t) (24a) 
at 

and the initial and boundary conditions [25,33] 

p(r ,  0) = I (24b) 

p( Rcff, t) = 0 (24C) 

(aP(r. t)~ o 
[ - -T r  L = (2.) 

Eqs. (3), (,,t) and (24a), together with the initial and 
boundary conditions of Eqs. (24b)-(24d),  describe the 
kinetics of emission quenching of excited molecules by 
acceptors on the surface of the disk. The term on the right- 
hand side in Eq. (24a) describes the random stochastic 
motion of the acceptor A with respect to B*. Eq, (24d) takes 
into account the reflection of the aeceptor when it reaches the 
p~riphery of the circle. 

From the viewpoint of a mathematical decision, the prob- 
lem of luminescence decay kinetics on the surface of the 
restricted circle in the above formulation is analogous to the 
problem of the heat flow in a hollow cylinder at some appro- 
priate initial and boundary conditions. The solution to this 
problem is well known [43 ]; we use the results obtained by 
Carslaw and Jaeger [43] to treat the emission decay kinetics 
on the surface of the circle. Using the results from the two- 
dimensional heat flow distribution function, p(r,  t) can be 
calculated from 

"•--•1 
°~'2[Jt (R°~) ] 2 

p(r,  t) = , [Jo(Reffo~,]2 [jj(Rot+)] 2 

R 

× exp( - a,2Dt)C( r, ¢~,) l r' C( r', o~i) dr' (25) 

where or, are the positive roots of  

J o ( R~t+a ) Y J ( R ~ ) - J i (Re=) Yo ( Rctfa ) = 0 (26) 

Jo and Ji are the zero- and first-order Bessel functions, Yo and 
Y= are the zero- and first-order Neumann functions, and C(r, 
a,) is given by 

C(r, ai) =Jo(ra,)  Yo(R¢.~o) - Y.(r~,)Jo(R~f:t,) (27) 

If we denote the initial probability of an acceptor heing placed 
at distance r by u(r )  the survival probability p ( t )  of the 
donor mcl,~cule at time t can then be expressed as 

R 

p( t )  = N(t.~) = / u ( r ) p ( r ,  t) dr (28) 
N(O) 

Now, if the circle contained n acceptor molecules that dif- 
fused mutually independent of one another, the probability 
that the excited donor would survive would then be given by 

R (I r)" N(t) _- u(r )p(r ,  t) d (29) 
N(0) 

For a random distribution, u ( r ) =  2~rr/(lrR 2 -  ~rR~ff 2) and 
from Eqs. (25) and (29) we obtain 

N(r) = A,(R, R~ff, a,) exp( - ol,2Dt) (30) 
N(O) , 

where 

A , ( R, Rcff, or:) = - -  
~/2 ¢~ 2[jt(Rai) ]2 

R2 -  R~. ~ [Yo(R+~,) I s -  [JI(Ra,)  ]2 

R 2 

°+, dr) 

F_.~. (30) provides an analytical solution m Eqs. (24a)-  
(24d) on the sm'f~e of the restricted circle. It is relevant to 
note that N(t) decays exponentially at sufficiently long times. 
The limiting value of the rate constant is k, = a,2D. This 
behavior of the decay kinetics on the restricted surface con- 
trasts with the long-time behavior of  the decay of excited 
molecules on an infinite surface, where the reaction rate con- 
stant does not achieve any asymptotic value even at long 
times (see Eq. (23b)) [41]. 

Another point is worth noting. In deriving Eq. (30), the 
donor molecule was assumed to be fixed at the center of  the 
circle. We take Eq. (30) to remain approximately correct 
when both the donor and the ~__¢eptor species move freely on 
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the circle surface. In this case, the diffusion coefficient D 
stands for the sum of the diffusion coefficients of donor and 
acceptor. Consequently, taking into account that acceptor and 
donor molecules cannot leave the circle during the reaction 
and a Poisson distribution applies for acceptor molecules in 
the circle, we have 

N(t.---2-) = A i ( R ,  Roll, ai) 
H(0) , =,,,~= i 

X exp( - oti2Ot) n~ h" exp( - h) (32) 

which after evaluation yields 

N(O) . ,= A~(R, R~n, ~,) exp( cti:Dt) 

(33) 

When t is sufficiently large, the decay kinetics approach 
the description 

N(t) 
N (  = exp{ - hi ! - A,(R, R,~,,, t~t) 

×exp( - al2Dt) +Ao] } (34) 

where t~ is the smallest positive root of Eq. (26); the factor 
Ao takes into account the initial decay of excited donors at 
short times. Eq. (34) can be used to analyse the long-time 
portion of the decay curves and permits an evaluation of the 
diffusion coefficient D of the molecules. For shorter decay 
times, other members of the infinite series in Eq. (33) must 
be taken into account. 

2.3. Monte Carlo calculations 

The above treatments of non-static emission quenching are 
the results of approximate considerations of the problem of a 
bimolecular reaction on the surface of a restricted circle. To 
understand the extent of their applicability, Monte Carlo sim- 
ulations were performed for the kinetics of luminescence 
quenching. 

In carrying out calculations with the Monte Carlo model, 
the excited donor and aceeptor molecules were modeled as 
circles with radii Ra. and R^ respectively. The initial state 
was prepared by assuming that the reagent molecules are fiat 
bodies and are randomly distributed on the surface of the disk 
with radius R, such 'hat the center of each molecule is inside 
the plane and that no molecule intersects another. 

As a first step, we filled the disk surface with small circles 
representing the acceptors to achieve maximal density. We 
also assumed hexagonal packing of acceptor molecules. Sub- 
sequently, the smaller circles were sorted using a random 
number F between 0 and I, that is 0 < F < 1, and a given 
number of the surface filling t# which denotes the ratio of the 
given average number ~ of acceptor molecules to its maximal 
value nm~ that can be placed on the surface of the circle; thus 
q~=~ln~,. For F <  tp, the acceptor molecule is left on the 

surface of the circle; for F >  tp, the acceptor molecule is 
deleted from the circle. 

As the third step, one donor molecule was placed randomly 
on the surface of the circle so that it did not overlap an 
acceptor molecule. After this step, there was one donor mol- 
ecule and a random number of acceptor molecules on the 
surface of the circle with the given average density. However, 
their positions are not random. To randomize, all molecules 
were then moved randomly with the limitation that no move- 
ments resulting in overlap were accepted. These movements 
are carried out to destroy the particle correlation arising from 
the initial placement requirements. Typically, the number of 
movement steps was 500, sufficient to randomize the initial 
positions of the molecules at the average number of acceptors 
used per circle: fi ,g.< 7. 

After preparation of the initial state at t = 0, Monte Carlo 
moves were made at time intervals A t on the excited donor 
molecule and for each acceptor molecule in the system. At 
every move, the donor molecule and every acceptor molecule 
were permitted to shift randomly in any direction for a dis- 
tance AAn, and AA^ respectively. The values of At, &An~. 
and A A^ change randomly from one move to another in the 
interval 0 to ~',~, 0 to An. and 0 to AA respectively. Neither 
intersection of the molecules nor exit of the center of the 
molecule out of the disk plane were permitted. Appropriate 
diffusion trials were rejected. 

The excited donor molecule was allowed to emit a light 
quantum with the probability per unit time "r- '. Any pair of 
excited donor and acceptor molecules were permitted to 
undergo reaction ( la)  or ( Ib)  at each Monte Carlo move 
with the probability w(r) per unit time given by Eq. (5). 

The spontaneous decay of excited molecules was taken 
into account in the following manner. If at a diffusion step a 
random number is lower than A 'r/z, then the donor molecule 
.as decayed at this step. Similarly for quenching by an accep- 
tor molecule, if at a dl usion step a random number is lower 
than the probability of the reaction during the time interval 
A t, that is for 

F < I - e x p [ - A t  v e x p ( - 2  r . . ~ ]  (35) 

then, the excited donor molecule is quenched at this step. 
The algorithm of Marsaglia and Zaman [44] was chosen 

to select random numbers. Moreover, Ad was chosen to be 
zero to treat the static reaction. 

Most of the simulations were carried out with the number 
of trials exceeding 3000 for each decay curve. The final emis- 
sion decay curves were obtained by averaging all the trial 
emission decay kinetics. 

2.4. Comparison of simulation results with analytical 
equations 

It is important to examine the accuracy of the descriplion 
of the luminescence decay kinetics embodied by the approx- 
imate Eq. (30). It is not clear, a priori, at which time intervals 
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and/or to what reaction extents Eq. (30) can be used to fit 
the experimental decay data. 

We compare below the simulated emission decay kinetics 
obtained from Eq. (33) with those calculated by the Monte 
Carlo method. The data from the latter method are taken as 
the "experimental" data for this purpose. To study the influ- 
ence of the restricted geometry on the decay kinetics, calcu- 
lations were performed for several values of the disk plane 
radius R for different distances d of maximal approach of the 
excited donor and of the accepter and for different number 
of reagent molecules on the disk plane surface. 

The quenching decay kinetics of the excited donor mole- 
cules B* on the surface of the circular disk was determined 
by Eq. (33) which contains an infinite series with parameters 
a, that are the roots of Eq. (26). However, this equation 
cannot be used to analyze the experimental decay kinetics 
without further simplification. 

Our calculations revealed that for the dimensions of the 
circle and for the reagents examined, R ~ 20-50 A and, for 
R~, - 4-12 ,~, the first coefficient A~ (R, R~n., a: ) that corre- 
sponds to the minimal root t~ of Eq. (26) exceeds all other 
coefficients, i.e. At ( R, R~n~ al ) >At(R, Re,, a~) for i ~ 2, and 
is greater than 0.5. We found that for several first members 
of the infinite series, the coefficients A~(R, Reft; a~) monoton- 
ically decrease with increase in i, A~ + t(R, Reff, oti+ t ) <A,(R, 
Ren~ a~). The reverse relation of the coefficients A, + : (R, R~,, 
a,+ t) >A~(R, Re,, a,) was found for the next few values of 
i. Such a non-monotonic change in A~(R, Reta~ a,) precludes 
usage of only the first members of the series in Eq. (~2) to 
fit the "experimental" decay kinetics. Therefore, in the infi- 
nite series of Eq. (33), we retain the first (i.e. the most 
significant) member of the series and substitute the sum of 
the rest of the members by a sum of several (two or three) 
exponents with parameters that can be found from a fitting of 
the "experimental" decay kinetics. 

Accordingly, to fit the decay curves of luminescence 
quenching on the surface of the disk we use the following 
equation instead of Eq. (33): 

N(O) , - t  

By such a procedure the lowest coefficient k: coincides with 
the first time coefficient in the infinite series in Eq. (33): 
tt ~" at~'D, 

To verify the above approximation we used Eq. (36) to 
analyze the Monte Carlo decay kinetics. Monte Carlo calcu- 
lations wereperformed using the following set of parameters: 
R-20--50 A, d ~ 2 - 1 0  ~, r,~ffilO-:°--10 - : :  s, An,--A,,, 
"~ ~=0.1.4) ,5 A, v =  I0 :~ s - t  and a - O . l - I  A. The emis- 
sion lifetime was chosen to be I0 ~a s :~o that almost no 
intrinsic decay of the excited donor molecules occurred dur- 
ing the time ofobservation ( t  ~ I 0 = ~ s). The fitting p.,~cedurc 
consisted in varying all the parameters B~ and k, in Eq. (36) 
to minimize the difference between the "theoretical" (Eq. 
(36))  and the "experimental" (Monte Carlo calculations) 
decay curves. 

¢- 
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0.6 c: 
o 
¢~ 5=3  

0.4 

~ 0.2 
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Fig. 3. Non-static luminescence quenching decay curves o n  the surface of 
the restricted cir¢!e obtained from Eq. (36) ( - - - )  and from Monte Carlo 
calculations ("experimental" points) for R ~ 20 A. d~ 2 A, ~, ~ 10 ~2 s ° t 
and a ~ 0. i A Tbe numbers over the curves denote the average nmnher of 
accepter spathes per circle. The best fit to Eq. (36) and Monte Carlo decay 
curves corresponds to B1~0.859, k1~1 .49×10  ~ s - t ,  B2~0.I01,  
k ~  7.67 × 10~ s° I, B ~ 0 . 0 4  and k~ ~ 1.4× 101°s ~l 

Our calculations showed that Eq. (36) provides a good fit 
to Monte Carlo decay kinetics with k: that coincides with 
t~:2D if D were related to the microscopic parameters of the 
reagents movement on the surface by 

Aa 2 

D-- y ~rSr ~ (37) 

with y ~ 0.5. 
Fig. 3 shows an example of the decay curves of emission 

quenching obtained by the Monte Carlo calculations (sym- 
bols) and by Eq. (36) (full curves) for a circle of radius 
R ~ 20 A; the radii of the donor and accepter molecules were 
t~,!,en to be 2 .~ and a = 0. ! ,~,, so that Re,=4.2  A. The 
different curves in Fig. 3 correspond to a different average 
number of accepter molecules per circle. The best fit of Eq. 
(36) and Monte Carlo decay curves corresponds to 
Bt --- 0.859, kl = 1.49× 10 ~ s -I ,  B2--0.101, k2=7.67 × 107 
s-  :, B3 = 0.04 and k3 = !.4 x 10 t° s -  :. The first root of Eq. 
(26) at R--20 A and Re,=4.2 A is oq = 7 . 3 ×  10 ~' era-: .  
This set of parameters corresponds to y = 0.45 in Eq. (37). 
It is worth noting that the same value of y was obtained from 
the analysis of the Monte Carlo decay curves at large t with 
the help of the simplified Eq. (34). 

Examinations of a,.tual experimental results on the kinetics 
of quenching of excited singlet and triplet molecules by 
accepters on the surface of quantized layered MoS2 particles 
using equations described above have been reported else- 
where [ 6,451. 

3. Triplet-triplet annihilation in restricted two- 
dimensional space (surface of circular disk) 

Interaction of two triplet excited molecules gives rise to 
T-T annihilation. Confinement of triplet excited molecules 



R.F. Khairutdinov et al. / Journal of Photochemistry and Photobiology A: Chemistry 98 ( ! 996) i-14 9 

on the surface of particles that provide a restricted two-dimen- 
sional reaction space censiderably enhances T-T annihilation 
[6]; the rate constant depends on the electronic coupling 
between the two excited molecules and exponentially on the 
intermolecular distance r in the same manner as in lumines- 
cence quenching reactions noted above. Two diametrically 
opposite mechanisms may be responsible for T-T annihila- 
tion of excited molecules: (i) annihilation occurs by diffu- 
sional approach of two excited molecules towards each other 
and (ii) annihilation occurs by static interaction of two triplet 
molecules. Both limiting cases of T-T annihilation on the 
surface of the restricted circle are considered below. 

We conceive a round fiat restricted surface of radius R with 
triplet excited molecules B* of diameter d randomly adsorbed 
on the surface. We then examine the kinetics of deactivation 
of the molecule B* which might occur by T-T annihilation 
with another excited molecule B* and/or by spontaneous 
transition to the ground state. Only two-body interactions 
between the excited molecules are taken into account. Trans- 
fer of an excited triplet molecule from one circle to another 
and any interaction between triplet molecules from different 
circles in solution are excluded in the present analysis. 

Two limiting situations exist concerning the products of 
T-T annihilation: ( 1 ) annihilation leads to the decay of two 
triplet molecules and (2) annihilation results in the formation 
of a triplet and a ground-state molecule. In our considerations 
we assumed that no triplets are formed in any of the steps 
that follow a T-T annihilation event. 

3.1. Static triplet--triplet annihilation: analytical solution 

We use the following equations for the decay of excited 
tripLt molecules: 

B* +B* ---* B + B  with rate constant w(r) (38) 

I 
B* .~ B +h~, with rate constant- (39) 

,/- 

From a quantitative analysis viewpoint, the principal differ- 
ence between V-T annihilation and luminescence quenching 
by acceptors considered previously is the difference between 
the relative concentrations of donors and between the con- 
centrations of donors and acceptors respectively. The con- 
centration of acceptor molecules strongly exceeds the 
concentration of excited donor molecules in emission 
quenching, whereas the concentrations of reagents are obvi- 
ously identical in the ease of T-T annihilation. 

A rigorous analysis of the kinetics of distant reactions at 
comparable reagent concentrations is unavailable. The prob- 
lem is that under these conditions it is somewhat evident that 
correlation effects in the decay of different donors cannot be 
disregarded; that is, one must account for the fact that the 
spatial distribution of acceptors near a given donor can be 
changed as a result of the decay of the acceptors in the reac- 
tions with other donors in the vicinity of the given donor. 

The approximate analytical description of the kinetics of a 
distant reaction in infinite space at comparable reagents con- 
centrations has been reported earlier by Khairutdinov et al. 
[34] and by Parmon et al. [46]. The suggested approxima- 
tion replaces the constant concentration c in Eq. (3) by a 
time-dependent concentralion from an equation somewhat 
similar to Eq. (3). For reactie.n (38), such an approximation 
indirectly assumes the !riplet mulccules are always randomly 
distributed at the mean prevalent concentration. However, it 
does not account for possible fluctuations of the local distri- 
bution of triplet molecules around a given triplet molecule 
(denoted Bg*) because of competition between different Bg* 
species for recombination with a chosen triplet molccule. This 
approximation is expected te be valid only for relatively small 
reaction extents as it overestimates the real recombination 
rate tbr large reaction extents at long times. 

Calculations [47] from the Monte Carlo method have 
shown that for equal reagents concentrations and for an expo- 
nential dependence of w(r) on the distance between donor 
and acccptor species tile above approximation is valid for 
about 80% of the B* decay with the error being 4% or less 
(i.e. less than ahnost 4% o1' the initial concentration of the 
species). In analyzing further the static T-T annihilation 
kinetics on the surface of the restricted circle, we employ the 
approximation suggested by Parmon et al. [46]. Thus, in lieu 
of Eq. (7), we consider the relationship 

dN(t, ro) = -k(t ,  ro)[N(t, ro) ] 2  _l N(t, ro) (40) 
dt "r 

which following integration over time t with k(t, to) given 
by Eq. (8) and subsequent averaging over the different posi- 
tions of triplet molecules on the surface of the circle gives 

R 

N(t) = exp - ro dtb 
N(o) 

d 

R + eU 

( I w<,, X I + N ( 0 )  rdr2~m~ w ( r ) + l / ¢  
d 

+ ' 

For a very large circle such ~,hat R ~ ~, ~Om.~ = ~and F-xt. (41 ) 
reduces to Eq. (42) 

=ex  - I + N ( 0 )  2~rrdrw(r)+l/¢ 
N(0) 

d 

4 (w< + -, ),])) ' 
' This is the equation for a static reaction on an infinite surface. 
As in the case of emi,:sion quenching, geometrical restriction 
yields slower excited-state decay kinetics at the longer times. 

Eq. (41) does not take into account the distribution of an 
initial concentration of triplet molecules on the circles in real 
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solutions. If we thus assume an initial (at time zero) Poisson 
distribution for the number of triplet molecules on the circles, 
then, instead of Eq. (41), one obtains the equation 

R 

N ( t ) - e x  - y ' ~ . . ( h  e x p ( - h )  rodro 
N(O) ~ d 

( n f w r, 
× I +  fr(R2 d2 ) rdr2~pma,,w(r)+l/r 

d 

- I  

! t ;t)] t 
where h is the average numbeJ of "accepter" molecules per 
circle. Thus the decay kinetics of excited triplet molecules 
can be obtained by numerical integration of Eq. (43). 

3.2. Non.static triplet=triplet annihilation: analytical 
solution 

[:or this case, we consider excited triplet molecules con- 
fined on the surface of a restricted circle in which the triplets 
can approach each other by diffusion along the surface. The 
problem of kinetics of non-static T-T annihilation on the 
surface of the circle is germane to that considered by Mc- 
Quarrie and coworkers [48,491. These workers solved the 
stochastic model for the second-order reaction A + A -~ C for 
molecules restricted in a single volume. Later, a similar 
approach was used by Rothenberger et al. [ 501 to examine 
T-T annihilation in micelles. A similar model is equally ade- 
quate to describe the present situation. Following the earlier 
reports [48-501, we restrict our treatm-nt of the kinetics of 
diffusion-induced T-T annihilation by assumin~ that anni- 
hilation of two triplet molecules on the surface of the 
restricted circle obeys pseudo-first-order kinetics with rate 
constant kxx. This assumption is based on the conclusion of 
C~urslow and Jaeger [511 that surface diffusion-controUed 
reactions can be described fairly well by simple kinetic equa- 
tions with a tim~lependent rate constant (see below). A 
more rigorous description of T-T annmilation on the surface 
of a restricted circle should take into account a more complex 
behavior than a simple pseudo-first-order character of the 
decay kinetics (see Section ~,2, above) 

The scheme for T-T  annihilation when n excited molecules 
ate on the surface of the circle is described by [48-501 

T.'---~ T~_, n=2, 3,4 .... 

with rate constant [ n ( n -  l)krr  (44) 

T . " ~  To n ~ 1 , 2 , 3 , 4  .... 

I 
with rate constant - ( 4 5 )  

T 

where T. stands for the circle containing n triplet molecules; 
the factor ½ n ( n -  I ) in the rate constant of F__.q. (44) denotes 

the number of ways of choosing a pair of triplets in a circle 
containing n triplet molecules. From Eqs. (44) and (45), the 
concentration [ T,,] of circles containing n triplet molecules 
is given by 

d[T,,](t) = _~ n ( n -  l )kTr[T, , ] ( t ) -  1 [T,,l(t) 
dt " r 

+ ½(n+ 2 ) ( n +  l)krr[T,,.~ 2](0  (46) 

The initial distribution of the number of triplet molecules on 
the circles must be known to solve Eq. (46). The resulting 
equation for the decay of triplet molecules has the simplest 
form if the initial distribution of the triplet molecules amongst 
the circles were given by the Poison distributiott 

I fi,, exp( - h  ) (47) IT,1 (0) =C,  n~ 

where C,, is tile total concentration of circles in solution. 
The series offal. (46) with the boundary condition delinod 

by Eq. (47) can be solved by generating fimction techniques 
[ 52 ]. Then, if the total concentration of triplet molecules in 
solution were given by N(t)= ~'~ , - .  ~ , . l ' r . !  ( t ) .  o n e  would 
obtain 148-501 

N(0) - e x  - B,, exp[ - l n ( n -  l)kTTtl (48) 
T i n  ~ I 

where 

2 n - I  e x p ( s h )  ~, h i 1"(( j -n+ I ) /2 )  
B,, 

= 2" n . , ~ , ( j -~z ) [F ( ( j+n+ l ) / 2 )2"  

with j ~ n. n + 2. n + 4 .... and !" is the gamma function [53 ]. 
W e  consider next the final distribution of triplet molecules 

amongst the circles after completion of T-T annihilation. We 
assume that all other decay proces:;cs ate slow compared with 
T-T annihilation and thus neglect them on the time scale of 
observation. Since triplet molecules react in a pairwise fash- 
ion, only those circles that initially contained an odd number 
of triplet molecules will contain one triplet molecule alter 
completion of the T-T annihilation process. Consequently, 
for the total concentration of triplet molecules after comple- 
tion of T-T annihilation we have ! 501 

N(~)  1 - exp(  - 2fi ) 
N(0) = B, 2h (49) 

In practice, one takes into account only a few members of 
the sum in Eq. (48). Our calculations have shown that 
E,,-sB,,-~. 10 (for h = 3), E,o?B,,< 10 -2 (for h = 5 )  and 
E~o 9B,, < 10- 2 (for h = 7). Thus the difference between the 
explicit decision of Eqs. (46) and (47) and the approximate 
one (Eq. (a3)) does not exceed I% of the initial triplet 
concentration if one takes into account in Eq. (48) only four 
members of the sum at ii = 3, six members of the sum at 

= 5 and eight members of the sum at h = 7. The total con- 
centration of triplet molecules after completion of T-T anni- 
hilation is B~ =0.17 (for h = 3 ) ,  B~ =0.10 (for ~i=5) and 
BI =0.07 (for h=7 ) .  
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3.3. Monte Carlo treatment 

To express the validity of the aforementioned analytical 
expression, we have carried out calculations (to simulate 
experiments) of T-T annihilation kinetics using the Monte 
Carlo model similar to that described earlier when discussing 
emission quenching of an excited donor molecule by accep- 
tots. Excited triplet molecules were modeled by a round circle 
of diameter d. Each triplet molecule was permitted to undergo 
intrinsic decay with lifetime "r. Also, any two triplet excited 
molecules were allowed to undergo annihilation at each 
Monte Carlo move with the probability w per unit time given 
by Eq. (5). We have further assumed that all other processes 
were slow compared with T-T annihilation and thus 
neglected them on the time scale of observation. 

3.4. Comparison of simulation ("experimental") results 
with ana(~,tieal equations 

We now verify the validity of the approximale equations 
derived above by comparing the "experimental" results of 
Monte Carlo calculations with decay curves obtained using 
Eqs. (43) and (48). 

3.4. !. Static quenching. We first test for the accuracy of the 
description of T-T annihilation decay kinetics by Eq. (43). 
As in the earlier treatment of luminescence quenching, our 
theoretical treatment of the decay of triplet molecules is 
approximate, and it is not clear a priori at which time intervals 
and/or to what reaction extent Eq. (38) can be used to fit the 
"experimental" decay kinetics of T-T annihilation. To clar- 
ify, we contrast the decay kinetics of T-T annihilation 
obtained with Eq. (43) with those determined by the Monte 
Carlo method. 

Fig. 4 shows the decay kinetics of static T-T annihilation 
obtained using Eq. (43) (full curves) and the results of 
Monte Carlo calculations (symbols) for several surface con- 
centrations of triplet molecules and for R = 20 ,~, and d = 4/~. 
The same values of the parameters u and a were used in 
calculations of the decay kinetics by Eq. (43) and by the 
Monte Carlo method. As seen in Fig. 4, the decay kinetics 
obtained from Eq. (43) agree reasonably well with the Monte 
Carlo decay curves. Also Eq. (43) describe.,~ the kinetics of 
the decay at about 90% of reagent decay with an accuracy of 
approximately 5% of the initial concentrat=on. These data 
indicate that the approximate Eq. (43) can be used to analyse 
the "experimental" data for static T-T annihilation on the 
surface of a restricted circle; use of Eq. (43) is complicated 
by the need for numerical integration. 

3.4.2. Non-static quenching. Eq. (48) describes the kinetics 
of T-T annihilation in terms of the pseudo-first-order rate 
constant k'rr. To analyze the validity of Eq. (48) for a treat- 
ment of non-static diffusion-induced T-T annihilation decay 
kinetics, we first examine how the rate constant k,r,r is related 
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Fig. 4. Decay kinetics of static T=T annihilation obtained by using Eq. (43) 
( = ~  ) and results of Monte Carlo calculations ( "experimental" points) for 
R ~.,~ 20 A, d ~ 4 A, w, ~, 10 '2 s ~ ' and a -.~ I A. The num~rs  over the curves 
show the average number of acceptors per circle. The same values of the 
pm'nmeters ~, and a were used in the calculations of the decay kinetics by 
Eq. (43) and by the Monte Carlo method. 

to the parameters of the above Monte Carlo calculations; k.rT 
is defined as 

1 
kT'r = k~ ,n.R ~ (50) 

where 1 / rrR' is the surface concentration of triplet molecules 
when one of these is placed ~n the surface of the circle and 
ke is the bimolecular rate constant for T-T annihilation. Typ- 
ically T-T annihilation is a diffusion-controlled reaction. 
Therefore 

ke=kD (51) 

where kt~ is the bimolecular rate constant of the surface dil- 
fusion-controlled reaction. According to Cm'slaw and Jaeger 
1511 (see also 139.-42 ] ), for surface reaction kD is a weakly 
dependent function of time that can frequently be replaced, 
to a good approximation, by its suitably averaged value that 
is related to the surface diffusion coefficient D by 

kD = &1rD (52) 

For diffusion-controlled reactions on the infinite surface, the 
parameter & typically assumes values between 0.3 and 0,6 
[ 40.-42 ]. 

To verify the validity of Eq. (48) and the possibility of 
using the time-independent value of the bimolecular rate con- 
stant for T-T annihilation on the surface of the restricted 
circle we compared the results of Monte Carlo calculations 
of the kinetics of T-T annihilation with those predicted by 
Eq. (48). 

Fig. 5 depicts the series of decay curves for non-static T- 
T annihilation obtained by Monte Carlo simulations ( "exper- 
imental" points) and the best fit of these decay data by Eq. 
(48) (full curves) for different dimensions of the circle and 
of the, triplet molecule, and several average number of triplet 
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Fig, ~. Decay kinetics of diffusion-induc~ (non-static) T-T annihilation 
on the surface of the circle calculated with the help of Eq, (48) ( ~ )  and 
by Monte Carlo ¢~¢ul~ions ( "expeflmental" points), (a) The circle radius 
R~20 A, the triplet molecule d i e t e r  d~2  A, ,,~ 10 ~ s ~ ~, a~  I A ~md 
/ ~  3.5:1:0.3 × 10 ~ s = ~. The numbers over the curves show the average 
number of ~eceptors Per circle. (b) 'the circle rad iu~ R- 20 A, ~, - 10 ~ s ~ 
• nd (~- I A. The number~ for the decay curves correspond to the diameters 
of th~ triplet molecule. 

molecules on the circle, Typically, Monte Carlo calculations 
were performed using a set of parameters for diffusion of 
triplet molecules and for T-T annihilation; l"d--10-to s, 
Ad ~ 0,5 A, u ~ 10 t~ s ~ i a = 0. I-1 A, and the average number 
of triplet molecule per circle varied from fi - 3 to ~ - 7. The 
emission lifetime, was chosen to be 3 x i 0-4 s so that almost 
no intrinsic decay of triplet molecules occurred during the 
time of observation ( t <  3 x 10 -6 s). 

Fig, $ (a) shows an example of the decay curves for the 
different average number of triplet molecules on the circle, 
for a circle radius R = 20 A and for a diameter of triplet 
molecule d ~  2 A. Eq. (48) gives a reasonably good fit to the 
"experimental" results of Monte Carlo calculations with k, rr 
identical for all three decay curves, 3,5 +0,3 x 106 s-~, the 
corresponding value of k,= is 4,9 + 0,4 x 10- 7 cm - "  s - 

Calculations show that a decisive factor for the kinetics of 
T - T  annihilation is the value of R=rt/R. where Rerr given by 
Eq, (21) is the radius of the T - T  annihilation event; Rcrf is 

the radius of the circle around the triplet molecule, intrusion 
into which causes a reaction with the other triplet molecule 
resulting in their mutual annihilation during time ~'d [ 34]. 
This is clearly seen from the decay curves presented in Fig. 
5(b) obtained for a fixed radius of the circle, R =  20 A, and 
for different radii of the triplet molecules indicated in Fig. 
5(b) by the numbers on the decay curves. 

Fig, 6(a) shows the kc dependence on the radius of T-T 
annihilation at three different values of a (a = 1 A (full 
squares), a=0.4 ,~ (asterisks) and at a=O.I A (pluses)) 
and for different diameters of the triplet molecule. 

The rate constant for T-T annihilation also depends on the 
radius R of the circle. This dependence is shown in Fig. 6(b) 
for three different values of the radius of T-.T annihilation, 
R~,. ~ 4.3 A, R~rr = 2.9 A and R~, = 2.2 A, for a fixed value of 
the diameter of triplet molecules, d = 2 ,~, and for different 
values of a. The full squares in Fig. 6(b) show the result of 
the calculations at a--  I ,~ (Roll= 4.3 A)~ the pluses corre- 
spond to a = 0.4 A (Reff ~ 2.9 A) and the asterisks refer to 
a=O.! A (R~,=2.2 A).  
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Fig. 6. (a) Dependence of the rate constant of T-T annihilation on the 
effective radius of the reaction for different values of a: B,  a =  l ,~; *, 
0=0.4/~; +,  a=0,1 ~. (b) Dependence of the rate constant of T -T  anni- 
hilation on the radius of the circle for different values of the T -T  annihilation 
radius: l ,  Rert=4.3 ,/~; +,  Re~r= 2.9 ~ ; . ,  R=rr= 2.2 ~. 
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As noted in Figs. 6 (a )  and 6(b) ,  the ratio l (¢ , lR  has a 
decisive influence on the k¢ value. An increase of k~ is 
observed with an increase in R~n/R at RcfflR > 0.1, whereas 
the notion that there is almost no dependence cf  k,~ on the 
circle radius is characteristic for values of Reff/R < 0.1. 

The data presented in Figs. 5(b)  and 6(b)  show that for a 
di|lusion controlled T - T  annihilation, a restricted circle may 
be considered as an infinite surface only if RefflR < 0.1. An 
appropriate value of  the bimolecular rate constant 
ke ~ = 2.0 + 0.2 × 10- ? em 2 s - t may be considered therefore 
as that which corresponds to the rate constant of T -T  anni- 
hilation on the infinite surface, 

The values of ¢d ( 10- ~o S) and Ad (0.5 A) above corre- 
spond to the value of the diffusion coefficient of triplet mol- 
ecules D ~ Ad2/4rd----6.2 × 10 -~ cm-2 s - i .  Then, from Eqs. 
(51 ) and (52) we have kD ~ 2& × 10- ? era-  a s -" .  This value 
of kD is in good agreement with the above value of k,, ~'~ at 
~'~ m I. These data indicate that at R~f,,IR < 0. I we can use Eqs. 
(48) ,  (50),  (51 ) and (52) to estimate the value of the surface 
diflhsion coefficient D. For R~rflR ~ 0, ! the use of Eqs. (48),  
(50) ,  (51) and (52) results in an overestimation of k,, and 
D while a seemingly good fit of the "experimental" data can 
be obtained by use of Eq. (48).  For R~fflR >t 0. I, the Monte 
Carlo fitting procedure of T - T  decay kinetics can be used to 
get adequate values of the parameters of the annihilation 
reaction [ 6]. 

4. Conclusions 

also been examined. Ti~is problem differs principally from 
that of emission quenching since the concentrations of the 
reagent molecules on the surface are equal to each other. An 
apl,~roximate solution of this problem tor the static interaction 
is given on the basis of the average reagent concentration 
approximation, when one assumes that in the course of the 
reaction the triplet molecules are always randomly distributed 
at a given mean concentration. Monte Carlo simulations 
("exper iments")  show that the decay kinetics obtained with 
the aid of derived equations agree fairly well with the results 
of simulations. Diffusion-induced annihilatioh kinetics on the 
surface of a restricted surface have been considered using the 
infinite space approach. In this case, Monte Carlo simulations 
show that Eq. (48) derived under this approximation can be 
used to analyse the reaction (s) on the circle until the effective 
radius of the annihilation R~,. does not exceed one tenth of 
the circle radius R, i.e. when Re ,<  0. IR. 
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Four problems of the kinetics of static and non-static elec- 
tron and energy transfer from excited donor molecules to 
accepters on the surface of the restricted circle were consid- 
ered in the present article. The analytical Eq. (20) allows the 
decay kinetics of an excited donor molecule B* by static 
distance-dependent electron and energy transfer to rando,n 
accepters to be dest:ribed. Luminescence decay kinetics on 
the surface of the restricted circle are slower than those on 
the infinite surface and the difference between them increases 
with an increase in the time of observation. Decay kinetics of 
excited molecules originating from diffusion approach of rea- 
gents on the surface of the circle obey Eq. (33);  they are 
exponential at sufficiently long times. This long-time behav- 
ior of the kinetics contras,s with the long-time behavior of 
diffusion-limited reactions on an infinite surface, where the 
reaction rate constant does not achieve an asymptotic value 
even at long times. To fit the "experimental" decay kinetics, 
one can use the phenomenological expression (35);  the min- 
imal time coefficient in this equation can be used to evaluate 
the diffusion coefficient of the reagent molecules on the sur- 
face of the circle. These two problems of emission decay 
quenching for such systems are typically solved by assuming 
that only one excited donor molecule and a number of accep- 
ter species are placed on ti~e surface of the circle. 

The problem of the decay of excited triplet molecule by 
T - T  annihilation on the surface of the restricted circle has 
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